Portal:Mathematics
The Mathematics Portal
Mathematics is the study of numbers, quantity, space, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.
Selected article | Selected picture | Did you know... | Topics in mathematics
Categories | WikiProjects | Things you can do | Index | Related portals
There are approximately 31,444 mathematics articles in Wikipedia.
Selected article
Image credit: User:Fropuff |
Knot theory is the branch of topology that studies mathematical knots, which are defined as embeddings of a circle S^{1} in 3-dimensional Euclidean space, R^{3}. This is basically equivalent to a conventional knotted string with the ends of the string joined together to prevent it from becoming undone. Two mathematical knots are considered equivalent if one can be transformed into the other via continuous deformations (known as ambient isotopies); these transformations correspond to manipulations of a knotted string that do not involve cutting the string or passing the string through itself.
Knots can be described in various ways, but the most common method is by planar diagrams (known as knot projections or knot diagrams). Given a method of description, a knot will have many descriptions, e.g., many diagrams, representing it. A fundamental problem in knot theory is determining when two descriptions represent the same knot. One way of distinguishing knots is by using a knot invariant, a "quantity" which remains the same even with different descriptions of a knot.
Research in knot theory began with the creation of knot tables and the systematic tabulation of knots. While tabulation remains an important task, today's researchers have a wide variety of backgrounds and goals. Classical knot theory, as initiated by Max Dehn, J. W. Alexander, and others, is primarily concerned with the knot group and invariants from homology theory such as the Alexander polynomial.
The discovery of the Jones polynomial by Vaughan Jones in 1984, and subsequent contributions from Edward Witten, Maxim Kontsevich, and others, revealed deep connections between knot theory and mathematical methods in statistical mechanics and quantum field theory. A plethora of knot invariants have been invented since then, utilizing sophisticated tools as quantum groups and Floer homology.
View all selected articles | Read More... |
Selected image
This spiral diagram represents all ordinal numbers less than ω^{ω}. The first (outermost) turn of the spiral represents the finite ordinal numbers, which are the regular counting numbers starting with zero. As the spiral completes its first turn (at the top of the diagram), the ordinal numbers approach infinity, or more precisely ω, the first transfinite ordinal number (identified with the set of all counting numbers, a "countably infinite" set, the cardinality of which corresponds to the first transfinite cardinal number, called ℵ_{0}). The ordinal numbers continue from this point in the second turn of the spiral with ω + 1, ω + 2, and so forth. (A special ordinal arithmetic is defined to give meaning to these expressions, since the + symbol here does not represent the addition of two real numbers.) Halfway through the second turn of the spiral (at the bottom) the numbers approach ω + ω, or ω · 2. The ordinal numbers continue with ω · 2 + 1 through ω · 2 + ω = ω · 3 (three-quarters of the way through the second turn, or at the "9 o'clock" position), then through ω · 4, and so forth, up to ω · ω = ω^{2} at the top. (As with addition, the multiplication and exponentiation operations have definitions that work with transfinite numbers.) The ordinals continue in the third turn of the spiral with ω^{2} + 1 through ω^{2} + ω, then through ω^{2} + ω^{2} = ω^{2} · 2, up to ω^{2} · ω = ω^{3} at the top of the third turn. Continuing in this way, the ordinals increase by one power of ω for each turn of the spiral, approaching ω^{ω} in the middle of the diagram, as the spiral makes a countably infinite number of turns. This process can actually continue (not shown in this diagram) through and , and so on, approaching the first epsilon number, ε_{0}. Each of these ordinals is still countable, and therefore equal in cardinality to ω. After uncountably many of these transfinite ordinals, the first uncountable ordinal is reached, corresponding to only the second infinite cardinal . The identification of this larger cardinality with the cardinality of the set of real numbers can neither be proved nor disproved within the standard version of axiomatic set theory called Zermelo–Fraenkel set theory, whether or not one also assumes the axiom of choice.
Did you know…
- ...properties of Pascal's triangle have application in many fields of mathematics including combinatorics, algebra, calculus and geometry?
- ...work in artificial intelligence makes use of Swarm intelligence, which has foundations in the behavorial examples found in nature of ants, birds, bees, and fish among others?
- ...that statistical properties dictated by Benford's Law are used in auditing of financial accounts as one means of detecting fraud?
- ...that Modular arithmetic has application in at least ten different fields of study, including the arts, computer science, and chemistry in addition to mathematics?
- ... that according to Kawasaki's theorem, an origami crease pattern with one vertex may be folded flat if and only if the sum of every other angle between consecutive creases is 180º?
- ... that, in the Rule 90 cellular automaton, any finite pattern eventually fills the whole array of cells with copies of itself?
- ... that, while the criss-cross algorithm visits all eight corners of the Klee–Minty cube when started at a worst corner, it visits only three more corners on average when started at a random corner?
WikiProjects
The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.
Project pages
Essays
Subprojects
Related projects
Things you can do
Categories
Algebra | Arithmetic | Analysis | Complex analysis | Applied mathematics | Calculus | Category theory | Chaos theory | Combinatorics | Dynamic systems | Fractals | Game theory | Geometry | Algebraic geometry | Graph theory | Group theory | Linear algebra | Mathematical logic | Model theory | Multi-dimensional geometry | Number theory | Numerical analysis | Optimization | Order theory | Probability and statistics | Set theory | Statistics | Topology | Algebraic topology | Trigonometry | Linear programming
Mathematics (books) | History of mathematics | Mathematicians | Awards | Education | Literature | Notation | Organizations | Theorems | Proofs | Unsolved problems
Topics in mathematics
General | Foundations | Number theory | Discrete mathematics |
---|---|---|---|
| |||
Algebra | Analysis | Geometry and topology | Applied mathematics |
Index of mathematics articles
ARTICLE INDEX: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z (0–9) |
MATHEMATICIANS: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z |
Related portals
Algebra | Analysis | Category theory |
Computer science |
Cryptography | Discrete mathematics |
Logic | Mathematics | Number theory |
Physics | Science | Set theory | Statistics |
In other Wikimedia projects